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The term Relative Energy Deficiency in Sport was introduced by the International Olympic Committee in 2014. It refers to the
potential health and performance consequences of inadequate energy for sport, emphasizing that there are consequences of low
energy availability (EA; typically defined as <30 kcal·kg−1 fat-free mass·day−1) beyond the important and well-established female
athlete triad, and that low EA affects populations other than women. As the prevalence and consequences of Relative Energy
Deficiency in Sport become more apparent, it is important to understand the current knowledge of the hormonal changes that
occur with decreased EA. This paper highlights endocrine changes that have been observed in female and male athletes with low
EA.Where studies are not available in athletes, results of studies in low EA states, such as anorexia nervosa, are included. Dietary
intake/appetite-regulating hormones, insulin and other glucose-regulating hormones, growth hormone and insulin-like growth
factor 1, thyroid hormones, cortisol, and gonadal hormones are all discussed. The effects of low EA on body composition,
metabolic rate, and bone in female and male athletes are presented, and we identify future directions to address knowledge gaps
specific to athletes.
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Relative Energy Deficiency in Sport (RED-S), a term first
described by the International Olympic Committee in 2014, refers
to the potential health and performance consequences of inade-
quate energy for sport (Mountjoy et al., 2014). The concept was
derived from initial work on the female athlete triad (Triad),
defined as the interrelationship of energy availability (EA), men-
strual function, and bone health (Nattiv et al., 2007). More recent
studies in female and male athletes have demonstrated that low EA
can lead to other physiological and performance decrements
(Logue et al., 2018; Mountjoy et al., 2014). RED-S was proposed
to expand upon the Triad and to include both female and male
athletes. It suggests 10 physiological and 10 performance-related
effects of low EA (Mountjoy et al., 2014).

In this paper, we will focus specifically on the endocrine
effects of RED-S, or what the RED-S model lists as “metabolic,”
“endocrine,” “menstrual function,” and “bone health” conse-
quences (Mountjoy et al., 2014). While it is well accepted that
low EA affects reproductive hormones, resulting in menstrual
dysfunction, it is important to clarify what is and is not known
about other endocrine pathways and to identify sex differences to
better inform future research and treatment of RED-S. We have
summarized the key findings in Table 1.

Concept of Relative Energy Deficiency

EA has been defined as energy intake (EI, measured in kcal) minus
exercise energy expenditure (EEE, measured in kcal), divided by
fat-free mass (FFM, measured in kg), or the amount of dietary
energy remaining for normal physiological functioning after exer-
cise (Loucks, 2007). Such functioning includes cell maintenance,
thermoregulation, growth, and reproduction (Wade & Schneider,
1992). From an evolutionary perspective, low EA (typically
defined as <30 kcal·kg−1 FFM·day−1) due to periods of food
scarcity or extraordinary energy expenditure causes physiological
adaptations necessary to sustain life (Loucks & Thuma, 2003;
Wade & Schneider, 1992). In all mammals, bodily energy is
diverted away from processes not needed for immediate survival,
such as fat accumulation, growth, and development. Female
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mammals are particularly vulnerable to inadequate EA, as preg-
nancy and lactation are energetically expensive (Dufour & Sauther,
2002; Jasienska, 2003). Thus, it is not surprising that reproduction
is closely linked to EA in mammals, including humans.

The RED-S concept highlights that low EA not only affects the
reproductive system, but also influences other hormonal pathways
resulting in numerous endocrine-derived physiological conse-
quences. While the RED-S health effects diagram appropriately
centers energy in the model—emphasizing its importance and
influence on multiple physiological systems—it is important to
note that many hormonal and other physiological changes are
interrelated. Altering hormonal secretion to minimize reproductive
function and maximize survival efficiency may be a well-designed
solution to energy deficiency and beneficial for the maintenance of
the human species; however, this strategy is not optimal for an
athlete’s health and performance.

Such reproductive suppression in times of low EA is a form of
functional hypothalamic amenorrhea (FHA), which manifests as
persistent anovulation with no identifiable organic cause (Gordon
et al., 2017). Aberrant gonadotropic releasing hormone (GnRH)
pulsatility at the hypothalamus leads to abnormal pituitary secre-
tion of follicle-stimulating hormone (FSH) and luteinizing hor-
mone (LH), resulting in decreased estradiol and progesterone,
inadequate folliculogenesis, and anovulation (Gordon et al.,
2017). Athletes with FHA typically have lower EA than eumenor-
rheic athletes and nonathletic controls, although a specific EA
threshold cannot necessarily predict the menstrual status of all
females (Kaiserauer et al., 1989; Kopp-Woodroffe et al., 1999;
Lieberman et al., 2018; Reed et al., 2015; Williams et al., 2015). In
a prospective study of typically sedentary, eumenorrheic women
aged 18–30 years, manipulations of EA by diet and exercise led to
EA as low as 58% of baseline (Lieberman et al., 2018; Williams
et al., 2015). The probability of developing menstrual dysfunction
was greater than 50% as absolute EA dropped below 30 kcal·kg−1

FFM·day−1 (Lieberman et al., 2018). There was a dose–response
relationship between relative energy deficit (percentage decrease in
EA from baseline) and frequency of menstrual disturbances (luteal
phase defects, anovulation, and oligomenorrhea), but the severity
of menstrual disturbances did not correlate with the magnitude of
energy deficiency (Williams et al., 2015). These more recent
findings may suggest “RED-S” as a more descriptive term for
the increased risk of menstrual dysfunction in athletes with inade-
quate energy, rather than relying on the term “low EA,” which is
typically defined as <30 kcal·kg−1 FFM·day−1 (Loucks &
Thuma, 2003).

Potential Hormonal Effects of Relative
Energy Deficiency

Although studies have suggested that physiological functioning is
optimized at an EA ≥ 45 kcal·kg−1 FFM·day−1, there may be
individual variability for appropriate EA cutoffs to affect physio-
logical processes such as menstrual function (Loucks, 2007;
Loucks & Thuma, 2003). In addition, no standard protocol for
EA assessment has been established, with current measurements
often relying on self-reported EI and/or EEE (Koehler et al., 2013;
Loucks, 2007). Therefore, some of the understanding of hormonal
changes with RED-S has relied on studying populations assumed to
be in a state of low EA. For example, FHA has been used as a
surrogate marker for low EA. Women with anorexia nervosa (AN)
and athletes with oligo-amenorrhea not from an organic cause can

both be categorized as having FHA and have been studied to
determine hormonal changes in these states (Gordon et al., 2017).
Some studies focused on chronic low EA states, while others
focused on hormonal changes after short-term energy deficit. In
addition, athletes participating in sports that emphasize leanness
have been presumed to have lower EA than those in nonleanness
sports, and their hormonal profiles have been compared (Ackerman
et al., 2012a; Loucks, 2007; Reinking &Alexander, 2005). Thus, in
the following sections, the hormonal consequences of RED-S, as
determined by EA measurement, will be emphasized, but it is
important to acknowledge that, given the infancy of RED-S, some
of the hormonal findings are reported in populations with surrogate
markers for low EA; in such cases, this is clearly stated.

Body Composition and Metabolic Rate

Various reports indicated that amenorrheic athletes have lower
body mass index (BMI) than eumenorrheic athletes and sedentary
controls (Ackerman et al., 2015; Christo et al., 2008; Corr et al.,
2011). Amenorrheic athletes have also demonstrated lower abso-
lute and relative body fat compared with their eumenorrheic
counterparts (Ackerman et al., 2013; Christo et al., 2008; Corr
et al., 2011). In contrast, in one study of collegiate swimmers, the
ovarian suppressed athletes had slightly higher BMI and fat mass
compared with the eumenorrheic athletes (Vanheest et al., 2014). In
collegiate male athletes, distance runners (a sport that emphasizes
leanness) had lower BMI and fat mass compared with golfers, and
lower BMI than off-season wrestlers (another leanness sport,
though not subjected to weight cycling at the time of study),
but not lower fat mass (Ackerman et al., 2012a).

A reduced resting metabolic rate (RMR) has been reported in
amenorrheic athletes compared with eumenorrheic athletes and
controls, as well as in elite endurance athletes with low EA
(<45 kcal·kg−1 FFM·day−1) compared with “optimal EA”
(≥45 kcal·kg−1 FFM·day−1; De Souza et al., 2007; Melin et al.,
2015;Myerson et al., 1991). Similar results in RMR have been seen
in elite male endurance athletes with low EI compared with those
with adequate EI (Thompson et al., 1993). Despite similar EEE,
BMI, and body composition, the athletes with low EI consumed an
average of 1,490 fewer kcal·day−1 than the adequate EI group and
were routinely eating 1,116–1,395 kcal/day below the perceived
energy requirements (Thompson et al., 1993). RMR was 8% lower
in the low EI (low EA) group, suggesting an energy conserving
mechanism for maintenance of BMI and bodily function
(Thompson et al., 1993).

Dietary Intake Regulating Hormones

Numerous hormones have been implicated in appetite regulation
and in behavioral (reward related) food intake. Effects of low EA
on such hormones are described below, including what is known in
each sex.

Adipokines

Variation from optimal nutritional intake and reductions in body fat
can influence the normal hormonal activity of adipose tissue. The
adipokine leptin, an anorexigenic adipose hormone also involved
in reproduction, is lower in states of low EA and is reduced in
amenorrheic athletes (Ackerman et al., 2012b; Christo et al., 2008;
Corr et al., 2011; Donoso et al., 2010; Grinspoon et al., 1996;
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Hilton & Loucks, 2000). Leptin strongly correlates with fat mass in
various populations, including females with AN, female athletes
(regardless of menstrual status), and sedentary females (Ackerman
et al., 2012b; Grinspoon et al., 1996). Baseline leptin levels
positively predicted sex hormone concentrations (estradiol and
testosterone) in adolescents, and overnight leptin secretory param-
eters were positively associated with LH secretory parameters in
adolescent female athletes and nonathletes (Ackerman et al.,
2012b; Christo et al., 2008). Moreover, recombinant leptin admin-
istration has been shown to resume ovulatory cycles in some
women with FHA (Chou et al., 2011; Welt et al., 2004).

Adiponectin, another anorexigenic adipokine, is higher in
dancers with delayed menarche and low EA, and in some, but
not all, amenorrheic athletes (Donoso et al., 2010; O’Donnell & De
Souza, 2011; Russell et al., 2009). Higher adiponectin levels have
been reported in exercisers in general compared with nonathletes,
and correlate positively with lean mass and negatively with BMI
and fat content in some studies; results are inconsistent (Donoso
et al., 2010; O’Donnell & De Souza, 2011; Russell et al., 2009;
Simpson & Singh, 2008). Adipokines likely collectively inform the
hypothalamus about EA, but the exact regulatory role and con-
sequences of adipokines, such as adiponectin, are not well eluci-
dated (O’Donnell & De Souza, 2011; Russell & Misra, 2010).

Similar to female athletes, reductions in serum leptin have been
described in male athletes, particularly those participating in endur-
ance sports and sports emphasizing leanness. Acute reductions in
leptin have been reported in males after intense exercise in rowing,
running, and swimming endurance events of various durations
(Jurimae et al., 2007; Karamouzis et al., 2002; Leal-Cerro et al.,
1998; Roupas et al., 2013). Koehler et al. (2016) assessed the effects
of EA manipulation through diet and exercise on hormone levels,
including leptin, in six male habitual exercisers. Each participant
experienced four separate, 4-day conditions (with adequate wash-
out): EA of 15 kcal·kg−1 FFM·day−1 with andwithout exercise (EEE
15 kcal·kg−1 FFM·day−1) and 40 kcal·kg−1 FFM·day−1 with and
without exercise (EEE 15 kcal·kg−1 FFM·day−1). Fasting leptin was
53–56% lower after the two low EA conditions, regardless of
exercise, compared to baseline. The higher EA conditions did
not lead to significant changes in leptin levels compared to baseline
(Koehler et al., 2016). A study of Swedish male Olympic athletes
showed that men in leanness sports (e.g., gymnastics, judo, triath-
lon, skating) had lower leptin levels compared with men in other
sports (e.g., soccer, handball, ice hockey, snowboarding; Hagmar
et al., 2013). Male marathon runners were shown to have lower fat
mass and leptin levels compared with sedentary males, with a
positive correlation between leptin and total fat mass in both groups;
similar to findings in women (Leal-Cerro et al., 1998). Lower leptin
levels have also been observed in men addicted to exercise, another
potential surrogate for low EA. A cross-sectional observational
study by Lichtenstein et al. (2015) evaluated 20 men with exercise
addictions, as assessed by the Exercise Addiction Inventory
(Griffiths et al., 2005), compared with 20 men matched for age
and BMI. Mean serum leptin values were nearly 75% lower in the
exercise-addicted population, even after controlling for fat mass
(Lichtenstein et al., 2015). Similarly, Gomez-Merino et al. (2002)
showed that 5 days of military training, which induced an energy
deficiency, led to a mean decrease in leptin of 67% in men.

Adiponectin levels have been measured after various dura-
tions, intensities, and types of exercise in men, but EA was not
directly assessed (Simpson & Singh, 2008). Cross-sectional studies
that controlled for BMI and fat demonstrated a positive association
with physical activity and adiponectin, but studies examining

adiponectin levels after acute bouts of exercise did not control
for BMI/body composition and noted either no change or decreases
in adiponectin concentrations (Simpson & Singh, 2008). For
example, immediately following a 180-km ultramarathon in which
the athletes were estimated to accrue a mean energy deficit of
5,000 kcal, adiponectin levels were unchanged from baseline,
though the levels dropped slightly 17–22 hr after completion of
the race (Roupas et al., 2013).We are not aware of any research that
has examined adiponectin levels in males in chronic low EA states.

Ghrelin and Peptide YY

Ghrelin is an orexigenic hormone predominantly produced in the
stomach and is thought to act upon the hypothalamus and pituitary,
affecting secretion of GnRH, adrenocorticotropic hormone
(ACTH), growth hormone (GH), FSH, and LH. Ghrelin is elevated
in women with AN and in amenorrheic athletes (Ackerman et al.,
2012b; Christo et al., 2008; De Souza et al., 2004, 2007; Tolle et al.,
2003). Ghrelin is considered a marker of energy status—higher
ghrelin levels indicate a lower energy state—and various pulse
parameters correlate negatively with fat mass (Ackerman et al.,
2012b; Misra et al., 2005). Following a 3-month diet and exercise
intervention in young women, increased fasting ghrelin was shown
in those with decreased EA and weight loss (Scheid et al., 2011).

While a negative correlation has been observed between BMI
and ghrelin levels (Shiiya et al., 2002), ghrelin may have different
effects in individuals of different BMI values. Exogenous ghrelin
infusion increased caloric intake and hunger and appetite scores in
normal weight and obese subjects (Druce et al., 2005). A separate
exogenous ghrelin infusion study found that hunger scores
increased less in patients with AN than in controls (Miljic et al.,
2006). A lower ghrelin dose increased caloric intake for obese but
not normal weight subjects (Druce et al., 2005). Women with AN
and FHA have a high drive for thinness and high dietary restraint,
suggesting that some female athletes with decreased EA may have
a psychological suppression of ghrelin’s ability to stimulate
appetite (Scheid & De Souza, 2010). Overnight ghrelin secretion
correlated negatively with LH secretion in amenorrheic athletes,
even after controlling for fat mass, consistent with studies showing
ghrelin administration suppressing LH and FSH pulsatility in
animals and humans (Ackerman et al., 2012b; Misra, 2014).

Peptide YY (PYY) is released by intestinal cells in response to
caloric intake and acts at the hypothalamus to decrease appetite and
food ingestion. Interestingly, PYY is elevated in females with
decreased EA and in amenorrheic athletes; levels correlate nega-
tively with BMI and resting energy expenditure and positively with
body fat percentage (Misra et al., 2006; Russell et al., 2009; Scheid
et al., 2009). Animal models have demonstrated decreased LH
release following PYY administration, and other studies have
shown that PYY inhibits ghrelin-activated neurons (Fernandez-
Fernandez et al., 2005; Riediger et al., 2004). In addition, an
inverse relationship between PYY and testosterone was reported
in adolescent female athletes and controls (Russell et al., 2009).
Thus, PYY has been hypothesized to play a role in compounding
disordered eating behaviors in AN and FHA, contribute to ghrelin
resistance, and directly or indirectly contribute to the downregula-
tion of GnRH and gonadotropin release (Scheid & De Souza,
2010). More work is needed in humans, and, specifically, in
athletes with low EA, to test these theories.

In a study of males with AN, PYY was higher than in healthy
controls, but ghrelin did not differ between groups (Misra et al.,
2008). Koehler et al. (2016) assessed the effects of altered EA,
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through diet and exercise, on hormone levels in six male habitual
exercisers and showed that the low EA conditions (15 kcal·kg−1

FFM·day−1) did not result in a significant change in ghrelin from
baseline or when compared with the adequate EA conditions
(40 kcal·kg−1 FFM·day−1). With limited data, it is unclear if
appetite-regulating hormones respond differently to low EA in
male versus female athletes.

Oxytocin

Oxytocin is a hormone predominantly produced by the hypothala-
mus and released by the posterior pituitary. It has many roles, such
as effects on lactation and uterine contraction in women. More
recently, oxytocin has been implicated in inhibiting reward-related
eating behaviors, suppressing hypothalamic–pituitary–adrenal
(HPA) axis activity, and modifying the glucoregulatory response
to caloric consumption (Lawson, 2017; Ott et al., 2013). Oxytocin
may also have anxiolytic and antidepressant effects (Afinogenova
et al., 2016).

Interestingly, young female amenorrheic athletes had lower
overnight oxytocin secretion than regularly menstruating nonath-
letes when controlling for estradiol, as estradiol is thought to
stimulate oxytocin release (Lawson et al., 2013). Females with
AN had lower overnight oxytocin secretion than controls (Lawson
et al., 2011). Lawson et al. (2014) also reported positive correla-
tions of fasting oxytocin levels and surrogate measures of EA
(weight and BMI), REE, and secretion of hormones involved in
energy homeostasis in young amenorrheic athletes. It is conceiv-
able that the enhanced eating behaviors expected with low oxytocin
are overridden by increased anxiety and depressive symptoms that
may occur with decreased oxytocin in low EA states.

In a study of 12 professional male cyclists and 10 sedentary
controls, oxytocin levels did not increase after exercising to
exhaustion in either group, but preexercise, during exercise, and
postexercise oxytocin levels were lower in the athletes versus
controls (Chicharro et al., 2001). Because of the various roles of
oxytocin and dearth of literature of oxytocin in athletes, it is
important for further research to clarify how oxytocin changes
in low EA states and its predominant effects.

Insulin, Amylin, and Incretins

Insulin regulates the storage of energy (carbohydrates, protein, and
fat). In low EA states, insulin is typically downregulated to allow
for more substrate availability (Martin et al., 2008). Increased
insulin sensitivity and reduced insulin levels have been reported
in amenorrheic athletes compared with eumenorrheic athletes and
nonathletic controls (Laughlin & Yen, 1996; Rickenlund et al.,
2004). In addition, insulin affects GnRH signaling. Studies evalu-
ating 12- and 24-hr hormonal secretion have shown that insulin’s
pulsatile area under the curve (AUC) positively correlates with
LH pulsatility (Laughlin & Yen, 1996; Rickenlund et al., 2004).
When female runners with luteal phase defects were studied, such
runners demonstrated lower insulin levels compared with ovula-
tory sedentary runners and controls (De Souza et al., 2003).

Following four different 4-day EA conditions (15 kcal·kg−1

FFM·day−1 with exercise, 15 kcal·kg−1 FFM·day−1 without exer-
cise, 40 kcal·kg−1 FFM·day−1 with exercise, and 40 kcal·kg−1

FFM·day−1 without exercise), Koehler et al. (2016) showed sig-
nificant decreases in insulin (−34% to −38%) in both low EA states
(15 kcal·kg−1 FFM·day−1 with and without exercise) in male
exercisers. Similar results have been seen in males who underwent

three 72-hr fasting states, where insulin levels were significantly
lower on the final day of the fast compared with the initial day for
each fasting period (Chan et al., 2003). In male bodybuilders who
underwent 11 weeks of decreased EI with continued training to
decrease body fat for competition, insulin was significantly reduced
(Maestu et al., 2010). The authors noted a strong correlation
between insulin and lean mass, and suggested that similar to
animal models, humans may need a critical circulating level of
insulin for protein synthesis and anabolism after exercise (Maestu
et al., 2010).

Amylin, a peptide hormone secreted along with insulin from
the pancreatic beta cells, is reduced in fasting females with AN
compared with healthy controls (Wojcik et al., 2010). Amylin
contributes to glucose regulation and satiety, but we are not aware
of any research evaluating amylin levels by EA in either male or
female athletes.

Incretins, such as glucagon-like peptide 1 and gastric inhibi-
tory peptide, are gut hormones that stimulate insulin release and
inhibit glucagon release. Scheid et al. (2009) demonstrated that
glucagon-like peptide 1 concentrations were similar among seden-
tary ovulatory, exercising ovulatory, and exercising amenorrheic
women, even though the exercising amenorrheic women repre-
sented an energy deficient population. In contrast, reduced incretin
hormone concentrations have been reported in female patients with
AN (Misra & Klibanski, 2014). These inconsistencies, and the
paucity of information regarding many of the metabolic conse-
quences of RED-S in male and female sporting populations,
highlight the need for future work in this area.

GH/Insulin-Like Growth Factor 1

GH, a pituitary peptide, is necessary for muscle and bone anabo-
lism and the metabolism of carbohydrates, proteins, and lipids. GH
is stimulated by hormones such as ghrelin, and some of the effects
of GH are heavily mediated by insulin-like growth factor 1 (IGF-1),
a peptide produced in the liver. Females with AN have increased
GH secretion and reduced IGF-1 levels, suggesting a low
EA-acquired resistance to GH at the liver (Misra & Klibanski,
2014). Of interest, the effects of GH on carbohydrate metabolism
and lipolysis are not mediated by IGF-1 and are preserved in AN.
For example, GH can help maintain euglycemia in states of low EA
by withdrawing energy sources from fat stores (Misra & Klibanski,
2014). As proof of concept, GH administration in women with AN
led to decreased fat mass, although IGF-1 levels were unchanged
(Fazeli et al., 2010; Misra & Klibanski, 2014).

Studies evaluating the effect of EA in regularly menstruating
untrained women showed that compared with an adequate energy
state (45 kcal·kg−1 FFM·day−1), GH increased and IGF-1 decreased
when energy was restricted to 10 or 20 kcal·kg−1 FFM·day−1

(Loucks & Thuma, 2003; Loucks et al., 1998). When comparing
eumenorrheic nonathletes to amenorrheic and eumenorrheic ath-
letes, Laughlin and Yen (1996) found that the two athlete groups
had higher 24-hr mean GH concentrations than the nonathletes.
The three groups had similar IGF-1 levels. However, due to
differences in IGF binding protein-1 levels, the amenorrheic
athletes had the lowest bioactivity of IGF-1 (Laughlin &
Yen, 1996).

Increases in GH secretion have been observed in male wres-
tlers during a competitive wrestling season that involved dietary
restriction and weight loss (Roemmich & Sinning, 1997). By the
end of the season, the wrestlers had elevated GH concentrations
and significantly reduced IGF-1 concentrations, suggesting dietary
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restraint causes a partial GH resistance (Roemmich & Sinning,
1997). Case studies of men with AN have also indicated that
inadequate caloric intake increases GH levels (Rigotti et al., 1986;
Thienpont et al., 2000). Reductions in IGF-1 have also been seen in
male cyclists competing in a 1,230 km ultraendurance event, with
suppression of IGF-1 strongly associated with energy deficit
(Geesmann et al., 2016). In the previously mentioned 11-week
male bodybuilder study, the low EI group also had significant
reductions in IGF-1, which correlated with changes in insulin
(Maestu et al., 2010). In addition, when comparing male Olympic
athletes, those participating in endurance sports had higher IGF
binding protein-1 compared with nonendurance athletes, suggest-
ing less bioavailable IGF-1 (Hagmar et al., 2013).

Thyroid Hormones

The thyroid hormones triiodothyronine (T3) and thyroxine (T4) are
important for growth, reproduction, and metabolism. Both thyroid
excess and deficiency can stunt growth and inhibit reproductive
function (Martin et al., 2008). In response to periods of low EA, the
hypothalamic-pituitary-thyroid axis adapts in order to reduce
energy expenditure and a “sick euthyroid” profile is often noted
(Misra & Klibanski, 2014). Women with FHA and AN and athletes
with amenorrhea have demonstrated consistently decreased T3
levels, but variable levels of T4 and thyroid-stimulating hormone
(TSH; higher, lower, and similar) compared with eumenorrheic
women (Berga et al., 1989; Counts et al., 1992; De Souza et al.,
2007; Estour et al., 2010; Gordon, 2010; Harber et al., 1998;
Loucks & Heath, 1994; Loucks et al., 1992; Misra et al., 2003,
2004; Stoving et al., 1999).

In a study by Loucks and Callister (1993), 46 women were
randomized to groups of 4 days of “normal” or “low” EA (30 vs.
8 kcal·kg−1 FFM·day−1) involving no exercise, low-intensity exer-
cise, or high-intensity exercise resulting in six different testing
conditions. Low EA decreased total T3 by 15% and free T3 by 18%
compared with baseline. Total T4 increased by 7% and reverse T3
increased by 24%, but free T4 was unchanged. Exercise quantity
and intensity did not affect any thyroid hormone testing result
(Loucks & Callister, 1993). When 27 untrained, eumenorrheic
women performed supervised aerobic exercise over 4 days, but
were provided food to allow for four different levels of EA (10.8,
19.0, 25.0, and 40.4 kcal·kg−1 FFM·day−1), decreases in total T3
and free T3 occurred abruptly between 19 and 25 kcal·kg−1

FFM·day−1and increases in free T4 and reverse T3 occurred
abruptly between 10.8 and 19 kcal·kg−1 FFM·day−1 (Loucks &
Heath, 1994). This study suggests a positive association of T3 and
EA and that low T3 values may be a helpful marker of low EA.

In a cross-sectional study of elite female and male endurance
track and field athletes, Heikura et al. (2017) showed significantly
lower free T3 values in amenorrheic versus eumenorrheic females
and in males with testosterone within the lowest quartile of the
reference range compared with males with testosterone values
above this threshold. These groups, amenorrheic and low testos-
terone athletes, represent populations who commonly experience
low EA.

A cross-sectional study comparing 27 male elite runners
(13 sprinters and 14 marathoners) to 27 healthy, sedentary, lean
men showed that TSH and TSH:Free T3 ratios were lower in the
athletes (Perseghin et al., 2009). Free leptin index was indepen-
dently associated with the TSH:Free T3 ratio, suggesting that leptin
plays a role in the adaptive response of the hypothalamic–pituitary–
thyroid axis (Perseghin et al., 2009). However, there were no

differences between groups for free T3 and T4 (Perseghin et al.,
2009). A case series of four males with AN revealed signs of
hypothyroidism, including total T3, total T4, free T3, and free T4
measurements below normal ranges. However, TSH for each
patient was within the normal range (Skolnick et al., 2016).
More work is needed in both women and men to fully understand
adaptations of thyroid function to acute and chronic changes in EA.

Cortisol

The HPA axis plays a critical role in energy balance, particularly in
relation to food intake, energy storage, and energy mobilization.
Cortisol measures have demonstrated a U-shaped relationship with
BMI and adiposity; both extremely underweight and overweight
states potentially activate the HPA axis, resulting in higher cortisol
levels (Schorr et al., 2015). Although cortisol likely contributes to
increased adiposity during energy abundance, cortisol is also an
important catabolic hormone secreted by the adrenal cortex in
response to prolonged exercise, starvation, glycogen depletion, and
stress (Schaal et al., 2011). Studies of severe caloric restriction and
fasting have demonstrated increases in circulating cortisol in
animals and humans (Martin et al., 2008; Nakamura et al.,
2016). Of interest, in animal models, stress-related reproductive
feedback may begin in the upper digestive tract, where decreased
EI activates vagal afferents to stimulate the brain, eventually
causing noradrenergic input at the hypothalamus, thus increasing
cortisol releasing hormone (CRH) activity. Increased CRH at the
hypothalamus directly affects GnRH-positive neurons, modulating
GnRH release and attenuating pituitary LH pulsatility in animals
(Martin et al., 2008).

Loucks et al. (1989) showed no differences in ACTH secretion
or cortisol pulse frequency in amenorrheic athletes versus eume-
norrheic athletes or controls, but 24-hr urine cortisol measurements
were higher in the amenorrheic athletes than in the other two
groups. Higher baseline cortisol and higher overnight cortisol pulse
amplitude, mass, half-life, and AUC have been reported in amen-
orrheic athletes versus eumenorrheic athletes and controls
(Ackerman et al., 2013; Rickenlund et al., 2004). However, Laugh-
lin and Yen (1996) found higher 24-hr serum cortisol levels in
female athletes regardless of menstrual status compared with
nonathletes, consistent with the stress of exercise significantly
contributing to cortisol secretion. De Souza et al. (1994) reported
a blunted cortisol response to ACTH stimulation in amenorrheic
athletes versus eumenorrheic athletes and nonathletes, but similar
peak cortisol values were achieved in all groups. Schaal et al.
(2011) did not show any difference in cortisol levels at baseline or
in response to different exercise intensities between amenorrheic
and eumenorrheic athletes, but a blunted catecholamine (norepi-
nephrine and epinephrine) response to high-intensity exercise was
observed in the amenorrheic athletes.

Because CRH stimulates ACTH, which typically results in
increased cortisol, it is unclear if the disruption of GnRH pulsatility
in amenorrheic athletes is more directly affected by increased CRH
or hypercortisolemia. Hypercortisolemia may directly influence
reproductive function or simply be a biomarker of stress and
reproductive dysfunction in amenorrheic athletes (Ackerman
et al., 2013; Berga et al., 1989; Villanueva et al., 1986). In a study
using cognitive behavioral therapy in the treatment of FHA,
cortisol levels decreased and eumenorrhea was restored in
some patients (Michopoulos et al., 2013). Because women with
FHA have reported psychogenic difficulties accompanying
behaviors that result in energy deficit and metabolic stress, the
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authors suggest that cognitive behavioral therapy may have
decreased cortisol and altered eating and exercising behaviors
(Michopoulos et al., 2013). Tornberg et al. (2017) showed that
amenorrheic athletes had higher cortisol levels and lower blood
glucose levels than eumenorrheic athletes; they linked the changes
to decreased neuromuscular performance. Because of the interplay
between physical stress and psychological stress, and the relation-
ship between CRH, ACTH, cortisol, and other stress hormones,
more work is needed to completely understand cortisol’s role in
low EA in athletes.

In a small study of nine long-distance male runners with low
EA (mean 27.2 ± 12.7 kcal·kg−1 FFM·day−1) versus eight nonath-
letes with adequate EA (45.4 ± 18.2 kcal·kg−1 FFM·day−1), one-
time measures of cortisol were not significantly different between
groups (Hooper et al., 2017). More in-depth work is needed to
better understand the effects of low EA on adrenal function in male
athletes.

Hypothalamic–Pituitary–Gonadal Axis

Both female and male athletes in states of low EA may experience
alterations in normal sex hormone concentrations and function
(Ackerman & Misra, 2015; Hooper et al., 2017; Loucks & Thuma,
2003). As previously mentioned, it is well established that low EA
leads to menstrual cycle disruption, reproductive system suppres-
sion, and FHA in females, as a mechanism of energy conservation
for processes more vital than procreation (De Souza et al., 2007,
2014; Gordon et al., 2017; Jasienska, 2003). Understanding the
effects of prolonged low EA on reproductive hormones without
confounding by FHA is difficult. Amenorrhea is characterized by
changes in reproductive hormones. Nevertheless, Loucks and
Thuma (2003) showed severe low EA (10 kcal·kg−1 FFM·day−1)
reduced estradiol levels in regularly menstruating women. This
seminal study found that LH pulse frequency was diminished and
amplitude was higher during low EA (10 and 20 kcal·kg−1

FFM·day−1), though mean 24-hr LH and FSH concentrations
were unchanged (Loucks & Thuma, 2003). In adults, LH pulse
frequency has been shown to be highest in regularly menstruating
controls, lower in eumenorrheic athletes, and lowest in amenor-
rheic athletes, with inconsistent findings in LH pulse amplitude and
total LH secretion (Laughlin & Yen, 1996; Loucks et al., 1998;
Rickenlund et al., 2004). A study of amenorrheic athletes, eu-
menorrheic athletes, and female nonathletes aged 14–21 years
found no difference among groups in 8-hr overnight LH pulse
frequency; lower pulse amplitude and total pulsatile secretion in
amenorrheic athletes compared with controls; and no differences in
LH parameters between amenorrheic and eumenorrheic athletes
(Ackerman et al., 2012b). Such variability in findings likely reflect
differences in blood collection timing and frequency, phase of
menstrual cycle, and data analysis methods of frequent sampling.

As expected, urinary estradiol and progesterone are low in
amenorrheic athletes, but progesterone was also found to be lower
in eumenorrheic athletes during the luteal phase compared with
eumenorrheic nonathletes (Loucks et al., 1989). Both athlete
groups were inferred to have lower EA than the nonathletes based
on food records, training recall, and exercise testing (Loucks
et al., 1989).

Studies evaluating testosterone levels in females with low EA
or surrogates for low EA have produced inconsistent results, with
testosterone either being elevated, unchanged, or lowered in those
with low EA (see Table 1; Christo et al., 2008; Lagowska &
Kapczuk, 2016;Miller et al., 2007; Rickenlund et al., 2004; Russell

et al., 2009). When using menstrual dysfunction as a surrogate for
low EA, care must be taken in interpreting the results regarding
testosterone, as polycystic ovarian syndrome (characterized by
hyperandrogenism) can be the source of the menstrual dysfunction
in addition to or instead of an energy deficit (Rickenlund et al.,
2004). Further research is needed to understand how testosterone
levels change in response to low EA in females.

Importantly, males can also experience disruptions in their
normal reproductive hormone profiles in states of low EA. Healthy
males participating in a 72-hr fast had a marked reduction in total
testosterone levels compared with prefast values (Chan et al.,
2003). In this same study, when men were given replacement
doses of recombinant leptin during fasting, total testosterone was
not reduced when compared with baseline, suggesting similar roles
of leptin signaling effects on the hypothalamic–pituitary–gonadal
axis in men as in women (Chan et al., 2003). In a study of nine male
athletes who competed in a team, mixed ultraendurance race
>800 km (median duration 6.3 days, range 5.2–7.3 days), free
and total testosterone levels measured immediately after the race
were significantly reduced compared with prerace values (Berg
et al., 2008). These lower levels were coupled with a reduction in
subcutaneous and visceral adipose tissue in all of the athletes, and
decreased FSH and total and free IGF-1, but not LH (Berg et al.,
2008). The authors estimated EI and EEE in three of the athletes
and suggested an energy deficit of ∼40,000 kcal over the course of
the race. If these three athletes completed the race in the median
duration of 6.3 days, this would suggest an energy deficit of
6,349 kcal/day (Berg et al., 2008).

In general, male athletes participating in endurance sports or
those in which leanness is emphasized are at increased risk for low
or low normal testosterone (Bennell et al., 1996; Hackney et al.,
1998; Heikura et al., 2017). This state has been described as the
“exercise-hypogonadal male condition (EHMC),” where basal,
free, and total testosterone concentrations are reduced without
consistent elevations in LH levels (Hackney et al., 2005). However,
studies examining testosterone and LH secretion in male endurance
athletes at high risk for EHMC are not consistent in testosterone or
LH findings. McColl et al. (1989) found lower basal total serum
testosterone levels, LH pulse amplitude, and LH AUC (as calcu-
lated from frequent sampling over 6 hr) in high-mileage male
runners versus controls. MacConnie et al. (1986) reported similar
total testosterone levels in male marathon runners versus healthy
controls, but lower LH pulse frequency and amplitude over 8 hr.
The response of LH to increasing doses of exogenous GnRH was
also decreased in the marathoners (MacConnie et al., 1986). In a
study using frequent sampling over 4 hr, Hackney et al. (1988)
noted lower total and free testosterone levels in endurance-trained
men versus untrained men, with a trend toward higher LH con-
centrations in the athletes, but no difference in LH pulse frequency
or amplitude compared with the controls.

Hooper et al. (2017) compared 4-hr hormonal frequent sam-
pling of nine long-distance male runners exhibiting EHMC to eight
nonactive controls. As mentioned previously, the runners had a
mean EA of 27.2 kcal·kg−1 FFM·day−1 and the nonathletes had an
adequate mean EA of 45.4 kcal·kg−1 FFM·day−1. Mean total
testosterone was significantly reduced in the EHMC group, with
no differences in mean LH concentrations, pulse frequency, or
amplitude compared with controls (Hooper et al., 2017). Potential
explanations for the inconsistencies in the results of this latter study
versus those of the aforementioned studies include differences in
EA between the studies; different timing, duration, and frequency
of sampling; and different data analysis methods. While it has been
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hypothesized that high concentrations of cortisol could suppress
testosterone but not LH in EHMC/low EA, the data are inconsistent
(Cumming et al., 1983; Hackney et al., 1988; Hooper et al., 2017).
If cortisol does indeed suppress testosterone, this suggests a
peripheral mechanism for suppression of gonadal hormones in
men versus the central dysfunction that occurs in FHA in women.

Lower testosterone levels have also been reported in males
participating in nonleanness sports, such as American football and
soccer, suggesting male athletes in all sport types are at risk of
reduced testosterone and/or EHMC (Grasso et al., 1997; Moore &
Fry, 2007; Stone et al., 2017). A study comparing Division 1 male
collegiate golfers, runners, and off-season wrestlers found the
runners had reduced estradiol levels (Ackerman et al., 2012a).
The runners were the only group with pressure to conform to
leanness standards during the study. We are unaware of studies
showing the effects of EA on progestins in men, which are very low
at baseline. Further work is needed to understand the effects of low
EA on the hypothalamic–pituitary–gonadal axis in men of various
sports types, with a focus on accurate assessment of EA to better
understand results.

Bone Health

There are considerable effects of low EA on the health and
performance of athletes, which are beyond the scope of this paper.
Bone is worth mentioning, however, because of the abundance of
literature on this topic and the fact that bone is both an endocrine
organ—secreting fibroblast growth factor 23 and osteocalcin—and
an endocrine target (Guntur & Rosen, 2012). The majority of the
hormones discussed previously are known to impact bone metab-
olism. Studies of the hormonal changes in females with amenorrhea
and in women with AN (hypothalamic–pituitary–gonadal axis
suppression; decreased leptin, insulin, and IGF-1; increased
PYY and cortisol; and other hormonal alterations) have consis-
tently demonstrated detrimental effects on bone mineral density
(BMD), bone microarchitecture, and bone turnover markers in
these populations (Ackerman & Misra, 2015; Misra & Klibanski,
2014; Papageorgiou et al., 2017a).

Amenorrheic athletes have been shown to have lower BMD,
impaired bone microarchitecture, reduced estimates of bone
strength, and higher rates of fracture compared with eumenorrheic
athletes and nonathletic controls (Ackerman et al., 2015; Ackerman
& Misra, 2011; De Souza et al., 2014). Southmayd et al. (2017)
showed that EA and estrogen status exerted combined and inde-
pendent effects on BMD, bone geometry, and estimates of bone
strength. Studies of women in short- and long-term states of low
EA (by diet and exercise manipulation) have demonstrated nega-
tive effects on markers of bone turnover (Ihle & Loucks, 2004;
Papageorgiou 2017b; Zanker & Swaine, 1998).

In contrast, there are fewer studies of the effects of low EA on
BMD, bone quality, and bone metabolism in male athletes, and
results are less definitive. Male athletes participating in endurance
sports and sports emphasizing leanness (including runners, cy-
clists, and jockeys) have, on average, lower BMD than those in
nonleanness sports or sports involving high impact and multidi-
rectional bone loading (Papageorgiou et al., 2017a; Tenforde et al.,
2016). Decreased BMD, cortical area, and tibia strength/strain
index have been reported in jockeys and have been attributed to
chronically low EA (Greene et al., 2013; Warrington et al., 2009).
Low EA markers of BMI ≤17.5 kg/m2 (Tenforde et al., 2015) and
expected body weight <85% (Barrack et al., 2017) have been
associated with reduced BMD in adolescent male runners. Heikura

et al. (2017) reported a greater lifetime history of stress fractures in
male athletes with the lowest quartile of testosterone (although
within normal) compared with those with testosterone levels above
this threshold.

Papageorgiou et al. (2017b) examined the effects of two 5-day
protocols of controlled (45 kcal·kg−1 FFM·day−1) and restricted
(15 kcal·kg−1 FFM·day−1) EA in 11 men and 11 eumenorrheic
women. EA was achieved by manipulation of diet (either 60 or
30 kcal·kg−1 FFM·day−1) and a fixed exercise program of daily
treadmill running at 70% of peak aerobic capacity, resulting in an
EEE of 15 kcal·kg−1 FFM·day−1. The women had significantly
higher bone resorption marker AUCs and significantly lower bone
formation AUCs in the restricted condition compared with the
controlled state. However, markers of bone formation and resorp-
tion AUCs were not significantly different between conditions in
the men (Papageorgiou et al., 2017b). In contrast, Zanker and
Swaine (2000) investigated the effects of 3 days of low EA (50% of
estimated energy requirement) compared with an adequate EA
condition in eight male distance runners performing 60 min/day
of treadmill running. A significant decline in a bone formation
marker (N-terminal propeptide of Type 1 collagen) and IGF-1 were
noted (15% and 17%, respectively) following 3 days of energy
restriction; no change was observed for the adequate energy
condition nor in other bone markers in either condition (Zanker
& Swaine, 2000).

Interestingly, Ackerman et al. (2012a) reported that estradiol
levels, BMI, and resistance training were more important determi-
nants of BMD in male athletes than were testosterone levels. Thus,
future research on bone health and low EA in male athletes should
investigate the various effects of hormonal interactions on bone in
addition to the severity and duration of EA needed to negatively
impact bone health parameters.

Summary and Conclusions

Low EA is known to affect the reproductive system and other
interrelated hormonal pathways. Lower BMI, fat mass, and RMR
values have been reported in both male and female athletes with
low EA compared to adequate EA.

In both sexes, anorexigenic leptin is lower in low EA states. In
contrast, anorexigenic adiponectin has been shown to increase in
some women during low EA. Changes in adiponectin in exercising
men have been more inconsistent, and no studies have measured
changes in relation to EA. Orexigenic ghrelin is elevated in women
and remains normal in men with low EA. Anorexigenic PYY has
been shown to increase in both sexes with low EA. Oxytocin levels
are lower in athletes of both sexes compared with nonathletic
controls, but more research is needed in athletes to better under-
stand its role in modifying eating behaviors in the context of
low EA.

Levels of the important glucose-regulating hormone insulin
are lower in both male and female energy deficient athletes, while
its cosecreted hormone, amylin, has not been investigated in
athletes with reduced EA. Total IGF-1 and/or bioavailable IGF-
1 have been shown to be lower in low EA states in male and female
athletes. T3 has consistently been shown to be lower in women
with low EA, but more work is needed in male athletes. Males with
low EA have demonstrated a lower TSH:T3 ratio. Determining
thyroid profile patterns with changes in EA could prove helpful in
monitoring athletes at risk for RED-S.

Cortisol is typically elevated in low EA states, but is also
elevated in other stress states, such as during exercise. Thus, not all
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athletes with low EA have demonstrated significantly higher
cortisol levels in comparison to athletes with adequate EA.

Low female sex hormones, estradiol and progesterone, have
been consistently reported in states of low EA, supporting the FHA
model. In contrast, some, but not all, studies document reduced
testosterone levels in populations of energy-restricted male ath-
letes; differences in sampling and chronicity of energy deficiency
may explain variable measures in testosterone levels.

Low BMD has been reported in female and male athletes at
higher risk for low EA, though much more work has been done in
females with energy deficiency. The influence of low EA on
mechanisms underlying impaired bone health are better described
in female athletes; further studies in men with low EA may clarify
differences in bone turnover markers in men compared to women.

As the prevalence and consequences of RED-S become more
understood and such knowledge is applied to optimize the treat-
ment of athletes throughout the international sports and sports
science communities, the need to further our understanding of
hormonal pathways leading to certain health and performance
consequences is amplified. This paper attempts to summarize
what is currently known about various hormonal changes in low
EA states. It is important to emphasize that the majority of the
studies discussed did not directly measure EA, but instead made
assumptions about EA based on BMI, menstrual status, type of
sport, or duration of activity. Measuring EAwith food/training logs
might not reflect the athlete’s true physiological state, as these logs
only provide a snapshot of recent and current behavior, and
accurate measurement of EI and EEE is difficult with self-reported
methods. Literature related to low EA and RED-S in male popula-
tions is sparse and often uses surrogate markers of EA. Endocri-
nology is an integral component of sports medicine and RED-S,
and the endocrine and metabolic effects of low EA should be
further investigated using direct measurements, diverse popula-
tions, and both short- and long-term study designs. A specific focus
of future research should be placed on the hormonal changes
occurring in chronic low EA states rather than acute changes,
such as those that occur during a training session or competition.
With a more rigorous, prospective study of hormonal interactions
during changes in EA in athletic populations, we may discover
hormonal ranges specific to athletes compared to nonathletes. We
may also find that optimizing certain hormonal patterns through
diet and training should be individualized based on repeated
testing. Such work will improve our care of athletes at risk of
RED-S and better inform their training and nutritional planning for
optimal health and performance.
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