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Anorexia nervosa (AN) and hypothalamic amenorrhea (HA) are states of chronic energy
deprivation associated with severely compromised bone health. Poor bone accrual during
adolescence followed by increased bone loss results in lifelong low bone density, degraded
bone architecture, and higher risk of fractures, despite recovery from AN/HA. Amenorrhea
is only one of several compensatory responses to the negative energy balance. Other
hypothalamic-pituitary hormones are affected and contribute to bone deficits, including
activation of hypothalamic-pituitary-adrenal axis and growth hormone resistance.
Adipokines, particularly leptin, provide information on fat/energy stores, and gut hormones
play a role in the regulation of appetite and food intake. Alterations in all these hormones
influence bone metabolism. Restricted in scope, current pharmacologic approaches to
improve bone health have had overall limited success.
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1. Introduction

Anorexia nervosa (AN) is a relatively rare psychiatric disorder
of polygenic etiology with many genetic variants, including
psychiatric, educational, and medical phenotypes, all con-
tributing a small effect size [1]. Lifetime prevalence is 0.9%
among adult females in the United States and European
countries [2]. The excessive food restriction results in a
substantial energy deficit, hormonal aberrations, and deteri-
oration of bone health. Prior to 2013, amenorrhea was one of
four diagnostic criteria for AN in the Diagnostic and Statistical
Manual of Mental Disorders (DSM)-IV, in addition to refusal to
maintain body weight at or above a minimally normal weight,
intense fear of gaining weight, and disturbance in self-
perceived weight or shape [3]. The updated DSM-V has
broadened the definition by eliminating the requirement of
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amenorrhea [4]. DSM-V has also defined atypical AN as
meeting psychological diagnostic criteria with normal weight.
Despite the more liberal DSM-V diagnostic criteria, BMD has
been found to be equally low in women with AN by DSM-V
criteria as by DSM-IV criteria [5]. Furthermore, women with
atypical AN also had lower BMD than healthy women, despite
normal weight [5]. 80% of women with AN by DSM-V criteria
had BMD Z-score < −1.0 and 44% had Z-score < −2.0 at any
site, and 69% and 25% of womenwith atypical AN had BMD Z-
scores of <1.0 and <2.0, respectively [5]. Even with recovery of
AN, bone density does not fully normalize, and there is a
lifelong increased risk of fractures [6–9].

Up to 10% of patients with AN are male [10]. Bone density
has been found to be similarly low in adolescent males as
females with AN, and 32% of males with AN have lumbar
spine BMD Z-score of <−2.0 [11]. However, while females with
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AN have an increased fracture risk at all ages, males with AN
have a higher risk of fracture when >40 years old [12]. Women
also had a higher risk of fractures at nearly all anatomic sites,
particularly at the hip and pelvis, and men only had a higher
risk of vertebral fractures [12].

Hypothalamic amenorrhea (HA) is a state of less severe
chronic energy deficit from excess energy expenditure,
insufficient nutritional intake, and/or stress, resulting in
dysfunction of the hypothalamic-pituitary-gonadal (HPG)
axis with anovulation and cessation of menstrual cycles. It
is a diagnosis of exclusion once other hormonal, ovarian, or
anatomic causes are eliminated (e.g., hyperprolactinemia,
thyroid dysfunction, polycystic ovarian syndrome, primary
ovarian failure, etc.). HA is common, up to 60% among female
athletes, particularly those involved in lean sports that
emphasize endurance training and a lean physique (e.g.,
swimming, biking, running) [13]. Amenorrhea is one of several
compensatory responses to chronic energy deprivation in HA
with detrimental consequences in bone metabolism, al-
though the hormonal and bone effects are less severe
compared to AN. Prevalence of very low bone density (Z-
score ≤ −2.0) and low bone density (−2.0 < Z-score < −1.0) is
up to 15.4% and 39.8%, respectively [13]. The female athlete
triad was first used to describe the association of amenorrhea,
disordered eating, and osteoporosis in 1993 [14]. To highlight
the underlying pathophysiology, the International Olympic
Committee introduced the term Relative Energy Deficit in
Sports (RED-S) in 2014 [15].

Increasinglymore hormonal changes are found to occur as an
adaptive response to the chronic energydeficiency inHAandAN.
Beyond the HPG axis, alterations in other hypothalamic-pituitary
hormones, adipokines, and gut hormones contribute to the
inhibition of bone accrual and stimulation of bone loss.
Therapeutic interventions to improve bone health have
targeted hormonal disruptions, including estrogen, androgens,
insulin-like growth factor 1 (IGF-1), growth hormone, and
leptin, with underwhelming results, as the fundamental energy
deprivation needs to be addressed. Limited data on the use of
bone active drugs approved for postmenopausal osteoporosis
show potential for increased bone density but carry their own
specific potential complications. This narrative review will
focus on the status of bone health in AN/HA, the pathophys-
iology behind the bone deficits, and attempted treatment
approaches.
2. Status of Bone Health

In clinical practice dual-energy X-ray absorptiometry (DXA) is
used to measure areal bone mineral density (BMD). To
identify compromised bone health early, the Endocrine
Society recommends that patients with HA have a baseline
BMD measured if there has been 6 or months of amenorrhea
or if there is suspicion of severe nutritional deficiency, other
energy deficit states, and/or skeletal fragility [16]. Other
modalities of bone imaging, including quantitative computed
tomography (CT), and computational modeling to determine
bone strength, such as finite element analysis (FEA), are
primarily research tools that have help describe altered bone
density and quality in AN/HA.
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2.1. Bone Density

Areal BMD, asmeasured by DXA, is low in womenwith AN. Up
to 92% of young adult women with AN have T-score of <−1.0
and 38% have T-score < −2.5 [17]. In a longitudinal study,
women with AN continued to have a mean annual rate of
decline of 2.6% at the spine and 2.4% at the hip [18]. Indeed,
adult women with AN have decreased markers of bone
formation and increased markers of bone resorption, indicat-
ing bone loss [19,20]. While unchecked bone resorption is the
major concern in women with AN, adolescent girls with AN
have impeded bone accrual during a time when it's normally
at its maximum. This is evidenced by decreased markers of
bone formation (e.g., osteocalcin and bone-specific alkaline
phosphatase) and bone resorption (e.g., collagen type 1
crosslinked carboxyterminal telopeptide, urine deoxypyridinoline,
urineN-telopeptide), compared toTanner stage-matched, normal-
weight controls [21,22]. Adolescent boys with AN have also been
noted to have low bone turnover markers [23]. In healthy
females, 39% of the total body bone mineral content is accrued
in the circumpubertal years (around 10–14 years of age), and
>95% peak bone mass is reached by 19 years of age [24]. AN-
associated low bone accrual during adolescence is particularly
worrisome as it results in lowpeakbone density and early onset
of osteoporosis. Adult womenwith an onset of ANbefore age 18
have significantly lower BMD at the spine than those develop-
ing it later, independent of amenorrhea duration [25]. Women
with HA also have low bone density but to a lesser degree than
that compared to those with AN [26]. Predictors of low bone
density include low weight, body mass index (BMI), lean body
mass, and fat mass, later menarche, and greater duration of
amenorrhea [17,27,28].

Measures of volumetric BMD, as assessed by quantitative
CT, are independent of bone size (unlike areal BMD) and are
also low in AN. In a study comparing women with AN,
atypical AN, and healthy lean controls, vertebral volumetric
BMD, including trabecular and cortical compartments, has
been noted to be the lowest in women AN, intermediate in
women with atypical AN, and highest in the control group
[29]. In AN, vertebral volumetric BMD was positively associ-
ated with current and lowest achieved BMI and negatively
associated with illness and amenorrhea duration [29]. Women
with current amenorrhea with or without exogenous estrogens
had lower vertebral volumetric BMD than those with sponta-
neous menses, even after controlling for BMI [29]. Trabecular
and cortical volumetric BMD at the tibia has also been noted to
be low in AN [30].

2.2. Bone Quality

Bone strength depends on not only bone density but also
quality, which includes factors such as architectural integrity,
bone geometry, bone turnover rate, accumulation of micro-
damage, degree of mineralization, and collagen status [31].
The trabecular bone score (TBS) reflects bone architecture by
analyzing gray-level variation of pixels from lumbar spine
DXA images. In a study of adolescent girls with AN, 11% of
participants had degraded and 33% had partially degraded
bone microarchitecture as assessed by TBS [32]. Although TBS
has been shown to be better associated with fractures than
rio Biomedico Lombardo from ClinicalKey.com by Elsevier on February 07, 2019.
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areal BMD in adult populations of type 2 diabetesmellitus and
chronic glucocorticoid use, TBS was not found to be associat-
ed with fractures in this study of adolescent girls with AN of
relatively mild severity (mean BMI of 18.9 kg/m2) and short
duration (mean of 4 months) [32–34]. TBS was also not found
to correlate with disease duration in AN but did correlate with
age, BMI, lean mass, areal BMD by DXA, and volumetric BMD
by pQCT [32].

With a resolution of ~90 μm, high resolution peripheral
quantitative CT (HR-pQCT) can be used to image bone
microarchitecture. Females with AN have significantly lower
trabecular bone volume fraction and trabecular thickness and
greater trabecular separation at the ultradistal radius com-
pared to healthy controls [35]. In a study of adolescent girls
with AN, poor trabecular architecture was noted despite
having areal BMD by DXA similar to controls [36]. Changes in
cortical bone, including greater porosity and lower cortical
area and thickness, have also been noted by HR-pQCT despite
similar areal BMD by DXA at the radius [37]. Thus, detrimental
changes to the bone microarchitecture appear to precede
losses in areal BMD. The bone microarchitecture of young
adult women with AN has been compared to that of healthy
postmenopausal women aged 70–81 years. The women with
AN were found to have better total, cortical, and trabecular
BMD and cortical and trabecular thickness at the ultradistal
radius [38]. However, trabecular number and spacing were
comparable to that seen in osteoporosis and suggests early
degradation of trabecular bone [38].

Along with decreased bone mass, women with AN have
greater bone marrow fat compared to healthy controls, as
assessed by proton magnetic resonance spectroscopy (1H-
MRS), despite their overall low body fat [39]. Furthermore,
marrow fat correlates inversely with BMD [39]. Bone marrow
mesenchymal stem cells have the potential to differentiate
into adipocytes or osteoblasts [40]. Several processes have
beenobserved inAN that can lead to preferential differentiation
to adipocytes over osteoblasts, including hypoleptinemia and
hypercortisolism (see Section 3) [41,42]. Osteoporosis is also
characterized by thinning trabecular and cortical bone and
increased bone marrow fat [43]. However, the marrow fat
composition in osteoporosis is noted to be higher in saturated
lipids, which may be an additional biomarker of skeletal
fragility, while the marrow fat composition in AN has been
found to be normal [43–45].

2.3. Fracture Risk

Measurements estimating bone strength suggest an increased
fracture risk in women with AN. Compared to lean, healthy
controls, womenwith HA have a higher risk of hip fracture, as
calculated by the ratio of force applied to the hip from a fall
with respect to femoral strength and attenuation by overlay-
ing trochanteric soft tissue [46]. Furthermore, this factor of
risk at the hip has been associated with fragility fractures [46].
Other estimates of hip strength, including resistance to axial
and bending loads and indices of whole bone strength, have
been noted to be decreased in AN [47]. Women with HA have
also been found to have high factor of risk at the spine with
holding and bending, driven by low vertebral strength [46].
FEA is a computer-based simulation applied to QCT images to
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estimate bone fragility based on the distribution of bone mass
and the biomechanical properties of the bone extracellular
matrix. At the wrist, FEA estimates of failure load and
stiffness have been found to be worse in girls with AN than
controls, even after controlling for distal radius areal BMD
[37]. The decrease in strength may be driven by trabecular
deterioration as trabecular number has been found to be an
independent predictor of failure load and stiffness, account-
ing for 57% of the variability [35].

Indeed, fracture risk has been found to be significantly
higher in women with AN. In one study, girls and young
adults with AN had 60% more fractures than compared to
normal-weight controls (31.0% v. 19.4%) [48]. Although bone
density was lower in the women with AN, lower BMD within
the AN cohort was not associated with higher risk of
fractures, and fractures occurred even with normal BMD. In
a longitudinal study over 18 months, 12.5% of women with
AN were found to have incident vertebral fractures, all
asymptomatic, and these fractures were not predicted by
BMD, duration of illness, or severity of malnutrition [49]. The
increased risk of fracture persists with time and has been
estimated to be up to 2–3-fold higher, particularly at the hip,
spine, and distal forearm [8,9]. Amenorrheic athletes also
have higher lifetime fracture risk compared to eumenorrheic
athletes and nonathletes (47% versus 25.6% and 12.5%,
respectively), largely driven by stress fractures [50]. Predictors
of fractures among the amenorrheic athletes include lower
lumbar and whole body BMD and trabecular parameters as
assessed by HR-pQCT [50].

Recovery of bone density is slow. Bone density tends to
only stabilize during the first year after weight gain/restora-
tion in adolescent females and eventually increases with
long-term recovery [22,51]. However, BMD does not seem to
reach normal range [6,7]. Recovery of menstrual function may
be more important than weight for bone health, as one study
found that women who regained menses had increased spine
BMD but women who gained weight without the return of
menses continued to lose bone [18]. Predictors of recovery
from AN in general include higher baseline BMI, shorter
duration of illness, lack of lifetime depression diagnosis, and
greater self-esteem [52].
3. Pathophysiology

Certainly, the poor nutrition observed in AN/HA, particu-
larly insufficient intake of calcium, dairy, and protein,
contributes to inhibition of bone mass accrual during
adolescence [53]. However, the levels of parathyroid hor-
mone (PTH), which physiologically increase in response to
inadequate calcium/vitamin D intake, have been found to
be normal and similar to controls in AN [20,54]. Along with
the poor nutrition, disturbances in a complex network of
hormones emerge mainly as a compensatory response to
the chronic energy deprivation at the expense of bone
health. In addition to estrogen deficiency, other hormonal
derangements also involve other hypothalamic-pituitary
axes, adipokines, and gut hormones. All together, these
hormones influence the bone microenvironment, affecting
bone metabolism.
o Biomedico Lombardo from ClinicalKey.com by Elsevier on February 07, 2019.
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3.1. Bone Metabolism

The mechanism behind the decreased bone turnover in
adolescents with AN and the uncoupling of bone formation
and resorption in adult women has been an active area of
investigation. However, most studies have been limited by the
assessment of circulating factors that may not reflect the
bone microenvironment. Early research has focused on the
role of the receptor activator of nuclear factor-κβ ligand
(RANKL)/RANK/osteoprotegerin (OPG) system in bone resorp-
tion. RANKL is expressed by osteoblasts and stimulates
osteoclast differentiation and activation and inhibits osteo-
clast apoptosis [55]. OPG acts as a decoy receptor to sequester
RANKL and prevent it from affecting osteoclasts [55]. Al-
though circulating OPG levels have been found to be elevated
in girls with AN compared to controls, possibly as a
compensatorymechanism, levels of RANKL are also increased
and so the OPG/RANKL ratio is actually reduced [21,56,57]. The
net effect of the OPG/RANKL ratio, but not the individual
levels, has been found to be an independent predictor of bone
turnover markers [21,56]. OPG/RANKL ratio has also been
found to be positively correlated with lumbar BMD, while OPG
itself has been found to negatively correlated, possibly due to
a compensatory but inadequate response [56,57]. Cytokines,
including interleukin (IL)-1β, IL-6, tumor necrosis factor
(TNF)-α, and transforming growth factor (TGF)-β1, may also
play a role as they have been found to correlate with levels
of OPG, RANKL, and OPG/RANKL ratio in girls with AN;
however, studies have found inconsistent differences in
inflammatory cytokines and one study found that IL-6 did
not predict BMD [58–60].

More recent research has focused on the role of osteoblasts
in AN. Sclerostin and dickkopf-1 (DKK-1) are secreted by
osteocytes and inhibit Wnt/β-catenin signaling in osteoblasts
to inhibit osteoblast differentiation, proliferation, and func-
tion and may regulate expression of OPG and RANKL [61]. In
one study of girls and young adults with AN, sclerostin levels
were elevated compared to controls and positively correlated
with whole body BMD with a significant interaction with age
[19]. Another study on girls with perhaps less severe AN
(mean BMI 17.2 ± 0.21 versus 16.0 ± 1.6 in the former study)
found no difference in sclerostin levels compared to controls
[62]. In both studies, sclerostin levels correlated positively
with bone turnover markers in the control groups but not in
the AN females [19,62]. Furthermore, although estrogen has
been shown to decrease sclerostin levels in postmenopausal
women, there was no association between estradiol and
sclerostin levels in adolescent girls with and without AN,
and transdermal estradiol replacement in girls with AN did
not affect sclerostin levels despite an increase in BMD
[62,63]. These results suggest that alterations in other
hormones, such as IGF-1, (see Section 3) may affect the
role of sclerostin in bone metabolism in AN. DKK-1 levels
have been found to be lower in females with AN than
controls [19]. The increase in sclerostin levels in AN may
contribute to the decreased osteoblast activity and inhibi-
tion of bone mass acquisition, while the decrease in DKK-1
levels has been hypothesized to be a compensatory response.
Further studies are required to elucidate their roles in bone
health in AN.
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3.2. Hypothalamic-pituitary Axes

HA is characterized by suppression of gonadotropin-releasing
hormone pulsatility, resulting in low normal luteinizing hor-
mone and follicle-stimulating hormone levels, anovulation,
and amenorrhea [64]. Estrogen suppresses bone remodeling by
impeding both osteoblastogenesis and osteoclastogenesis [65].
Estrogen further inhibits bone resorption by directly affecting
osteoclast activity and survival, suppressing RANKL production
and increasing OPG production by osteoblasts, and suppressing
production of pro-resorptive cytokines [65]. Estrogen deficiency
results in primarily an increase in bone resorption with a
relative deficit in bone formation, and newly postmenopausal
women have accelerated bone loss of 1–2%, compared to stable
bone density in premenopausal women [66,67]. However,
estrogen deficiency alone does not wholly explain the bone
deficits seen in AN/HA.

Women with AN may also have low levels of testosterone
and dehydroepiandrosterone sulfate (DHEAS), which is pro-
duced by the adrenal glands and converted into androgens
and estrogens, while normal-weight woman with HA seem to
maintain normal androgen levels [68–70]. During puberty,
androgens stimulate longitudinal and radial bone growth [71].
Along with estrogens, but to a lesser degree, androgens
maintain trabecular bone in adulthood by decreasing osteo-
clastogenesis, stimulating osteoclast apoptosis, and preventing
osteoblast apoptosis [71]. However, the major effect of andro-
gens is likely from aromatization to estrogen. In addition,
androgens upregulate transforming growth factor (TGF)-β and
IGFs to stimulate bone formation and downregulate IL-6 to
suppress osteoclastogenesis [71]. In ANDHEAS levels positively
correlate with markers of bone formation and inversely with
markers of bone resorption [69,70]. Lower total and free
testosterone and DHEA levels predict lower bone density [68].

Beyond the HPG axis, HA is also associated with other
neuroendocrine dysfunction, including growth hormone (GH)
resistance with increased basal and pulsatile GH secretion but
decreased IGF-1 activity; increased levels of corticotropin-
releasing hormone, adrenocorticotropic hormone, and corti-
sol; and low normal levels of thyrotropin, decreased levels of
thyroid hormone, and increased levels of the inactive reverse
triiodothyronine similar to a sick euthyroid state [54,64,72–77].
These neuroendocrine disturbances further contribute to the
inhibition of bone accrual and loss of bone.

The resistance to growth hormone has been proposed to
be a protective response to chronic starvation in order to slow
growth-related processes (Golden 1994). IGF-1 stimulates
osteoblast activity by upregulating processes that increase
collagen synthesis and decrease collagen degradation [78].
Indirectly through stabilizing β-catenin in the Wnt canonical
signaling pathway, IGF-1 may also encourage osteoblastogen-
esis [78]. Along with the effects of estrogen, GH and IGF-1 have
key roles in skeletal maturation, pubertal growth, and bone
mass accrual during the early adolescent years [79]. In
postmenopausal women IGF-1 levels correlated positively
with BMD [80]. The availability of IGF-1 is regulated by binding
proteins. In addition to low serum IGF-1 levels, women with
AN also have lower IGFBP-3 and higher IGFBP-2 levels [81].
While IGFBP-3may enhance IGF activity by upregulating IGF-1
delivery to cell surface receptors, IGFBP-2 prevents IGF-1 from
rio Biomedico Lombardo from ClinicalKey.com by Elsevier on February 07, 2019.
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acting on osteoblasts [78]. In AN, IGF-1 levels are positively
associated with markers of bone formation, inversely associat-
ed with markers of bone resorption, and positively associated
with BMD and parameters of trabecular microarchitecture;
similar associations with IGFBP-3 levels have been observed as
well [69,82–84].

It is unclear if hypercortisolism in AN is in response to
chronic nutritional deprivation and psychiatric stress, con-
tributing to it, or both. It is furthering poor bone metabolism.
In girls with AN, strong inverse correlations were observed
between markers of bone formation and cortisol levels,
compared to no relation in healthy controls; no correlation
was found with a marker of bone resorption [74]. Thus,
hypercortisolism may inhibit bone accrual in girls with AN.
Continued hypercortisolemia in woman may also result in
accelerated bone loss as cortisol has been noted to be the best
predictor of spine BMD variability [73]. The effects of
exogenous glucocorticoids on the uncoupling of bone forma-
tion and resorption has been well studied. Excess glucocorti-
coids inhibits osteogenic over adipocyte differentiation of
bone marrow stromal cells and induces osteoblast apoptosis
to deter bone formation [42]. In addition, excess glucocorti-
coids stimulate bone resorption by increasing RANKL expres-
sion, reducing OPG expression, and promoting osteoclast
survival [42]. Patients with subclinical hypercortisolism (i.e.,
without symptoms) have been found to have low levels of
bone formation markers, increased bone loss, low bone
density particularly at the spine, and increased vertebral
fracture risk, regardless of age, gender, gonadal status, and
BMD [85]. Cortisol may also inhibit gastrointestinal absorption
and increase renal excretion of calcium.

The hypothalamic dysfunction also involves hormones
released from the posterior pituitary. Oxytocin has major
roles in childbirth and lactation and may also be involved in
appetite and energy regulation. Oxytocin decreases food
intake, possibly through effects on reward and cognitive
processes [86]. Overnight levels of oxytocin have been found
to be low in women with AN and HA compared to healthy
controls, even after controlling for estradiol levels [87,88]. In
contrast, postprandial oxytocin secretion is higher in AN [89].
This increase in postprandial oxytocin, measured peripheral-
ly, has been proposed to paradoxically reflect attenuated
central signaling of oxytocinergic satiety in the starved state
[89]. Postprandial oxytocin levels were positively associated
with increased severity of disordered eating and associated
with differential activation of food motivation neural path-
ways as assessed by functional magnetic resonance imaging
(MRI) [89]. Oxytocin has also been shown to stimulate
osteoblast differentiation in vitro and increase BMD when
administered peripherally, but not centrally, to mice [90]. In
women with AN, overnight oxytocin levels were positively
associated with BMD at the spine but not at the hip [88].
Overnight oxytocin levels have also been found to be
positively associated with greater integrity of trabecular and
cortical microarchitecture as well as strength at the distal
radius in women with HA [87]. There were weaker associa-
tions at the tibia, a site that likely benefits from weight-
bearing exercise [87]. No association was seen in ovulatory
athletic women [87]. Thus, low oxytocin levels may contribute
to poor bone quality only in the setting of estrogen deficiency.
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Antidiuretic hormone (ADH), another hormone secreted
from the posterior pituitary, regulates water homeostasis and
osmolality by promoting the retention of water at the collecting
ducts of the kidneys. Abnormal osmoregulation of vasopressin
has been observed in AN with an erratic release of vasopressin
being common [91]. Overproduction of ADH can lead to
hyponatremia. Anorectic women with hyponatremia have
been found to have lower BMD at the spine and hip, even after
adjusting for other variables [92,93]. As females with AN have
similar levels of ADH both in the cerebrospinal fluid and serum,
other factors likely contribute to hyponatremia inAN, including
excessive water ingestion, hypovolemia from long-term sodi-
um restriction or the misuse of diuretics, impaired cell mem-
brane integrity, and use of psychiatric medications like selective
serotonin reuptake inhibitors [94,95].

3.3. Adipokines

Leptin may be the keymediator of the observed abnormalities
in the hypothalamic-pituitary axes. Produced primarily in
adipose tissue, leptin levels are directly related to amount of
body fat [96–98]. Leptin levels, along with fat mass, are lower
in females with AN as well as women with HA compared to
weight-matched and activity-matched eumenorrheic con-
trols, and leptin levels increase after recovery [99–102]. Leptin
levels also acutely fall to 10% of baseline within 72 h of
starvation, out of proportion to any loss of fat mass [103].
Physiologic replacement of leptin prevented starvation-induced
changes in the gonadal, growth hormone, and thyroid axes [103].
Thus, hypoleptinemia signals a state of energy deficiency and
seems to trigger adaptive mechanisms to conserve energy:
suppression of HPG axis to prevent pregnancy, growth hormone
resistance to limit growth, and sick euthyroid syndrome-like
status to slow metabolism [104]. Leptin may affect bone
metabolism through these altered hypothalamic-pituitary axes.
In women with AN, leptin levels are positively correlated with
bone density at the hip and spine as well as parameters of
trabecular microarchitecture at the distal radius, independent
of BMI [84]. The administration of leptin to womenwith HA has
been show to help normalize neuroendocrine dysfunction and
increase BMD (see Section 4) [105–107]. Leptin does not seem to
directly regulate other adipokines, including vaspin and visfatin,
or gut hormones, including amylin, ghrelin, and peptide YY,
suggesting redundant regulationof energyhomeostasis [108–111].

Although not confirmed in humans, leptin may also have
central effects on bone via noradrenergic and serotonergic
signaling as well as direct effects on bone [112]. Mouse studies
suggest that leptin induces cortical bone formation via β1
sympathetic activation and/or the GH-IGF-1 axis, but causes
trabecular bone loss via β2 sympathetic activation and inhibi-
tion of brainstem-derived serotonin synthesis [113,114]. Leptin
may also act directly on bone marrow stromal cells to increase
expression of osteogenic genes, resulting in differentiation
along the osteogenic over the adipocytic pathway [41]. Leptin
also stimulates stromal cells to increase OPG and decrease
RANKL expression, suppressing osteoclastogenesis [115]. In
vitro studies have also shown that leptin increases de novo
collagen synthesis and mineralization [116]. Peripheral admin-
istration of leptin increases bone in leptin-deficient, but not
normal, mice [117]. Thus, leptin may be the link among fat
o Biomedico Lombardo from ClinicalKey.com by Elsevier on February 07, 2019.
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stores, energy availability, reproductive function, and bone
health.

The effects of other adipokines on bonemetabolism in AN/
HA have been less studied and their roles remain unclear.
Adiponectin is also secreted by adipose tissue and is involved
in insulin sensitization, promotion of beta cell function and
survival, and anti-inflammatory activity [118]. Although
adiponectin levels are inversely associated with central
obesity in the general population, levels in females with AN
have varied widely with observations of lower, similar, and
elevated adiponectin levels compared to healthy controls
[119–122]. Adiponectin levels have been found to be negative-
ly associated with BMD in adolescent females with AN
[119,120]. In exercise-induced HA, levels of adiponectin did
not differ among athletes with or without amenorrhea and
controls and were not found to predict markers of bone
turnover or BMD [123]. Adiponectin has been found to have
variable effects on bone. In in vitro studies adiponectin has
been shown to stimulate the differentiation and proliferation
of osteoblasts butmay also act on osteoblasts to suppress OPG
and increase RANKL expression to stimulate osteoclastic
activity [124,125]. In a more recent mice model, adiponectin
decreased proliferation and increased apoptosis of osteoblasts
in young mice to hinder bone mass accrual but increased bone
mass via inhibitory effects on the sympathetic nervous system
in later life [126]. Overall, in adolescents andyoungwomenwith
AN, adiponectin appears to have a net negative effect.

Preadipocyte factor 1 (pref-1) is an epidermal growth factor
secreted by preadipocytes and is an important regulator of
mesenchymal cells. In vitro studies show that pref-1 inhibits
both adipocyte and osteoblast differentiation, and in mice
overexpression of pref-1 results in decreased body weight, fat
mass, and bone mass [127]. Women with AN and HA have
increased level of pref-1 compared with normal-weight
controls, and pref-1 has been found to correlate positively
with bone marrow fat and negatively with bone density
[128,129]. In healthy controls, pref-1 is negatively correlated
with bone marrow fat [130]. Thus, the effects of pref-1 may
depend on the nutritional status. It has also been proposed
that pref-1 may be cleaved and released in the circulation
when preadipocytes differentiate into adipocytes in women
with HA, explaining the elevated circulating level of pref-1 in
relation to high bone marrow fat [130]. Although mouse
studies have suggested that GH negatively regulates pref-1
[127], levels of and longitudinal changes in pref-1 and IGF-I
have not been found to correlate in females with AN or
healthy controls [131]. Pref-1 has been found to be negatively
regulated by estradiol in girls with AN but not influenced by
leptin [129,131]. Women who have recovered from AN have
lower pref-1 levels and lower bone marrow fat than those
with active AN, comparable to healthy controls [130].

Omentin-1 is mainly expressed by visceral adipose tissue
andmaymodulate obesity-related metabolic dysfunction and
atherosclerosis via an anti-inflammatory mechanism [132].
Levels have found to be lower in obesity, type 2 diabetes, and
polycystic ovarian syndrome [132]. Ometin-1 may also have a
role in bone metabolism, as levels are inversely associated
with bone turnover and density in healthy premenopausal
women, but not in postmenopausal women [133]. Adolescent
girls with AN have been found to have higher levels of
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omentin-1 than healthy controls, and associations with bone
parameters follow the premenopausal pattern despite amen-
orrhea with inverse relationships with OPG/RANKL ratio, bone
turnover markers, and BMD [120,134]. In in vitro studies,
omentin-1 has been found to inhibit osteoblast differentiation
while stimulating OPG and inhibiting RANKL expression and
secretion to suppressosteoclast formation [135]. Thus, omentin-1
may decrease bone turnover in adolescent girls with AN but
mouse studies suggest a more complicated picture. Although
overexpression of omentin-1 in mice with and without ovariec-
tomy decreased serum levels of bone turnover markers, it
partially restored BMD and femur bone strength in the ovariec-
tomized mice and did not affect control mice [135].

Vaspin is another visceral adipose tissue-derived hormone
that has roles in insulin sensitivity and cardiovascular disease,
though levels are higher with obesity and may serve as a
compensatory mechanism [132]. In one study adolescent girls
with AN had higher levels of vaspin compared to controls, and
levels negatively correlated with OPG/RANKL ratio but was not
associated with bone turnover markers [136]. BMD was not
reported. In in vitro studies, vaspin has been found to protect
osteoblasts from apoptosis and inhibit RANKL-induced osteo-
clastogenesis [137,138]. The role of vaspin in bone metabolism
in AN may be further complicated with regulation by thyroid
hormones, growth hormone, adiponectin, and leptin [136].

3.4. Gut Hormones

Gut hormones may also contribute to the coupling between
fat and bone tissue. Insulin and amylin from pancreatic β
cells and other gastrointestinal hormones, particularly ghrel-
in and peptide YY (PYY), involved in appetite regulation may
have direct effects on bone cells. Observed differences in
these gut hormones inAN/HA,mostly in response to starvation,
may contribute to a negative bone balance.

Fasting insulin levels and measures of insulin resistance
are lower in girls with AN compared to healthy controls
[119,139]. Although these insulin measures were positively
associated with both markers of bone formation and resorp-
tion, they were not associated with bone density in multivar-
iate analysis [119]. In vitro studies have shown that insulin
promotes osteoblast proliferation and differentiation and
may act synergistically with IGF-1 and PTH, and rodent
studies have shown that local administration of insulin to
the hemicalvaria increases histomorphometric indices of
bone formation 2- to 3-fold [140–142].

Amylin is co-secreted with insulin from pancreatic β cells
and has been shown to directly stimulate osteoblast prolifer-
ation and inhibit osteoclast differentiation and activity [143].
One study showed that fasting amylin levels are lower in
women with AN than healthy controls, and levels were
positively associated with hip BMD, independent of weight
and percent fat [144]. Another study in women with HA did
not find any difference in amylin levels compared to BMI-
matched healthy controls [108]. While administration of
amylin improved bone density and strength in normal
rodents and those with streptozotocin-induced type 1 diabe-
tes, amylin treatment for 1 year was not found to affect bone
turnover markers or BMD in patients with type 1 diabetes
mellitus [145–147].
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Fibroblast growth factor-21 (FGF-21) is predominantly
expressed by the liver in response to starvation via activation
of peroxisome proliferator-activator receptor α (PPARα). It is
involved in regulating glucose and lipid metabolism, possibly
through stimulation of adiponectin [148]. One study in
anorectic women found that FGF-21 levels were lower than
healthy controls, while another study in anorectic women
with higher BMI (mean 17.8 versus 15.9 kg/m2 in the former
study) found no difference [149]. A proposed explanation for
lower FGF-21 levels in AN is the lack of fat stores and thus free
fatty acids to activate PPARα [150]. Since levels of FGF-21
decrease with realimentation therapy as expected, FGF-21
levels may be maximally induced in AN [149,150]. Lower FGF-
21 levels in AN may be advantageous as it is associated with
better trabecular microarchitecture and bone strength at the
radius [150]. In mice, overexpression and administration of
FGF-21 results in decreased bone mass by inhibiting osteo-
blastogenesis and stimulating adipogenesis from bone mar-
row mesenchymal stem cells via PPARγ [151].

Gut hormones such as ghrelin and PYY serve as peripheral
signals to the hypothalamus to regulate appetite and food
intake. Ghrelin, which is primarily secreted from the gastroin-
testinal tract, is an orexigenic hormone released during fasting
and acts centrally to stimulate appetite and food intake and
induce secretion of GH [143]. Adolescent girls with AN have
higher levels of ghrelin compared to normal controls, and
female athletes with amenorrhea have higher levels of ghrelin
compared to eumenorrheic athletes and healthy controls
[119,123,152,153]. The high ghrelin level has been attributed
as an adaptive response to the caloric deficit in AN [154].
Independent of IGF-1 levels, ghrelin levels were found to be
positively associated with BMD measures in AN but not in HA;
ghrelin levels were inversely associated with bone turnover
markers in HA [119,123]. Ghrelin may directly promote bone
formation by increasing osteoblast proliferation and differenti-
ation, as the administration of ghrelin to rats increases BMD
even in the setting of growth hormone deficiency [155].

Peptide YY (PYY) is secreted from the endocrine L cells of the
intestine in response to food intake and has been shown to
have anorectic effects in normal-weight and obese persons
[156,157]. Levels of PYY are low in obesity and high in females
with ANandHA compared to normal controls [119,123,152,158].
It has been hypothesized that the elevated levels of PYYmay be
due to delayed gastric emptying in AN patients [159]. PYY may
be contributing to appetite suppression in AN/HA, and levels
correlate with drive for thinness in women with HA [152]. PYY
levels are inversely associated with BMD, independent of BMI
[119,123,158,160]. In mice studies, PYY overexpression reduced
bone mass by both decreasing osteoblast activity and increas-
ing bone resorption [161].

The roles of other gut hormones in AN/HA have been
explored. Levels of glucose-dependent insulinotropic poly-
peptide (GIP), which is secreted in response to feeding and
induces insulin and glucagon secretion, are low in AN
[143,144]. Although GIP may have anabolic effects on bone,
levels did not correlate with BMD in womenwith AN [143,144].
Glucagon-like peptide-1 (GLP-1) and GLP-2 levels increase
after food intake and stimulate insulin secretion and nutrient
absorption, respectively [143]. While GLP-1 does not seem to
directly affect osteoblasts or osteoclasts, it may have indirect
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effects via stimulation of calcitonin release, and GLP-2 may
directly reduce bone resorption [143]. Women with AN/HA
have been found to have similar levels of GLP-2 and GLP-1
levels as healthy controls, and GLP-2 has not been found to
predict BMD [144,152].

The pervasive alterations in the above described hormones in
aggregate affect bonemetabolismwith a negative net effect. In a
multivariate analysis that included body composition, pituitary-
related hormones, adipokines, and gut hormones, independent
predictors of higher bonedensitywere higher BMI/leanmass and
levels of estradiol, growthhormone, and IGF-1 and lower levels of
cortisol, leptin, adiponectin, and PYY [119].
4. Pharmacologic Treatment Approaches

Since the pervasive endocrine dysfunction described above is
primarily in response to a state of chronic energy deficit,
management is focused on addressing this underlying cause.
The treatment of AN focuses on weight rehabilitation and
involves a multidisciplinary approach, including psychologi-
cal, medical, and nutritional aspects. The primary goal for
women with HA is to normalize energy status, and thus
weight, in a similar manner via modifications in diet and/or
exercise training. Once energy balance is restored, menses
may return on the order of months, followed by an increase
BMD on the order of years. Aside from the long time course of
recovery, success itself is variable. About half of patients with
AN have a full recovery, a third improve, and a fifth suffer a
chronic course [162]. Thus, pharmacologic approaches targeting
bone health have been studied.

Although estrogen in the form of oral contraceptives
(OCPs) is widely prescribed for females with AN and HA for
bone health, it has not been found to increase bone density at
the spine or hip after controlling for changes in weight
[163–166]. For HA, OCPs have been shown to stabilize or
slightly increase spine bone density (1% per year), compared
to placebo [167–169]. Treatment with OCPs, however, does not
affect stress fracture incidence in athletes [167]. Estrogen
therapymay lack efficacy in addressing bone health in AN/HA
because it has a primarily anti-resorptive effect and bone
turnover is abnormally low in adolescents with AN. In
addition, estrogen treatment only addresses one hormonal
abnormality and may worsen others. Estrogen may decrease
free testosterone levels by increasing sex hormone binding
globulin levels, and oral estrogen can decrease IGF-1 levels
[170]. In girls excessive exogenous estrogen may lead to
premature fusion of epiphysis leading to short stature. More
recently, physiologic estrogen replacement has been studied.
In a randomized controlled trial using physiologic estrogen
replacement for 18 months, girls with AN on estrogen had
increased BMD at the spine and stabilized BMD at the total
hip, compared to no change in BMD at the spine and slight
bone loss at the hip for those on placebo [171]. Although bone
accrual increased in the anorectic girls treated with physio-
logic estrogen replacement, rates were similar to the untreat-
ed healthy controls and did not result in normalization of
BMD [171]. The main concern with both OCPs and physiologic
replacement of estrogen is the masking of return of menses, a
key indicator of recovery.
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As androgens have anabolic effects on bone, the efficacy of
testosterone and DHEA treatments have been studied alone
and in combination with estrogen. Testosterone treatment in
women with AN and relative testosterone deficiency over
3 weeks increased 1 of 3 markers of bone formation analyzed
and did not affect a marker of bone resorption [172]. Although
treatment with DHEA over 1 year was shown to transiently
increase markers of bone formation compared to OCP and
decreasemarkers of bone resorption similar to OCP, DHEA did
not significantly increase BMD once corrected for weight gain
[166]. The combination of androgen and estrogens may fair a
little better. One study found that the combination of DHEA
and OCP over 18 months maintained BMD, while there was a
decrease in BMD with placebo [173].

IGF-1 therapy has also been tried with and without estrogen
with some promising results. First of all, a supraphysiologic dose
of recombinant human GH was not able to overcome GH
resistance in women with AN, as it did not affect IGF-1 levels or
bone turnover markers [174]. Short-term (~1 week) administra-
tion of recombinant IGF-1 in girls with AN did increase a marker
of bone formation and decrease a marker of bone resorption
[175]. In a trial that randomized women with AN to 1) recombi-
nant IGF-1 and OCP, 2) IGF-1 alone, 3) OCP alone, or 4) no
treatment for 9 months, only the combined treatment group
increased spine BMD by 1.8%, which was not enough to
normalize BMD [176].

Leptin monotherapy may address multiple hormone
abnormalities to more effectively improve bone health. In
clinical trials, administration of subcutaneous leptin in
physiologic doses has been shown to restore the HPG axis in
HA women, increasing LH levels, LH pulse frequency, and
estradiol and progesterone levels, and reestablish menses
[105,106]. Furthermore, leptin decreased cortisol levels and
increased thyroid hormone and IGF-1 levels [72,105,106]. In
the short-term, leptin increasedmarkers of bone formation by
week 4 and prevented an increase in a marker of bone
resorption [105,106]. After 2 years of treatment, the only
change from baseline was a decrease in a marker of bone
resorption [107]. Two years of leptin treatment in an open-
label extension trial resulted in an increase in lumbar BMD of
4% but no effect at the hip, radius, and whole body [107].
Leptin was also found to decrease RANKL/OPG ratio but did
not affect serum levels of sclerostin or DKK-1 [177]. Finally,
leptin also decreased PTH levels, possibly through a direct
effect or through restoration of estradiol, which increases
calcium absorption from the intestine and decreases calcium
renal excretion [177]. Overall, it seems that the improvement
in bone mass is not due to a direct effect of leptin as leptin
levels did not correlate with BMD [177]. As would be expected,
women treated with leptin lost weight and fat mass but
maintained lean body mass [105,178]. Other less concerning
safety issues include injection site reactions and the devel-
opment of nonneutralizing antibodies. The clinical trials to
date show that leptin is a safe, effective therapeutic option in
women with HA, improving both neuroendocrine and bone
outcomes; however, further studies are needed before clinical
adaptation. Leptin would not be an option for womenwith AN
but, with careful monitoring and dose adjustments, may have
potential for women with mild HA in conjunction with
lifestyle changes.
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Bone active medications are approved for the treatment of
postmenopausal osteoporosis and include anti-resorptive
(e.g., bisphosphonates) and anabolic (e.g., teriparatide) ap-
proaches. In a randomized controlled trial in adolescents with
AN, alendronate treatment for 1 year was found to increase
BMD at the lumbar spine by 3.5 ± 4.6% and femoral neck by
4.4 ± 6.4%, but similar increases were seen in the placebo
group [179]. Both groups had gained weight, and body weight
was the most important determinant of BMD [179]. In another
randomized controlled trial, risedronate for 1 year also in-
creased BMDat the spine by 3%and at the hip by 2%,whichwas
significant when compared to placebo; the addition of low dose
testosterone did not affect the results [180]. The major concern
with the use of bisphosphonates in a premenopausal popula-
tion is its long half-life coupled with its teratogenic potential.
The anabolic agent teriparatide, an analog of PTH, had more
impressive results, at least at the spine. In a small randomized
controlled trial over 6 months inwomen with AN, teriparatide
increased spine BMD by 6 ±1.4%, compared to 0.2 ± 0.7% with
placebo, but did not affect hip BMD, a pattern similar to that
seen in postmenopausal women [181,182]. Due to risk of
osteosarcoma observed in rats, but not yet seen in humans,
teriparatide is contraindicated in adolescents and young
adults who have open epiphyses [183,184]. Given that RANKL
levels are increased in AN, denosumab, a humanmonoclonal
antibody to RANKL that acts as an inhibitor and has anti-
resorptive effects, may be beneficial for bone health in adult
women with AN who have increased bone resorption; no
clinical trials have been performed to date. Finally,
romosozumab, a sclerostin inhibitor, may also be useful as
it increases bone formation and decreases bone resorption,
at least in the first 9 months of treatment; this medication is
currentlypendingU.S. FoodandDrugAdministrationapproval [185].

Clinically available treatments for low bone density
include estrogen, testosterone, DHEA, and bone active agents.
Practice guidelines for HA have been recently updated. Due to
the high risk for bone stress injuries and fractures in athletes,
the 2014 Female Athlete Triad Coalition has specified guide-
lines for the management of bone health. The Female Athlete
Triad Coalition recommended consideration of transdermal
estradiol if Z-scores are ≤−2.0, there are ongoing risk factors,
and there has been a lack of response to 1 year of
nonpharmacologic therapy (BMD loss or new fracture) and
reserving bone active agents for those who have failed or have
contraindications to estrogen replacement (see Fig. 1) [186].
The 2017 Endocrine Society guidelines suggested against
using OCPs in patients with hypothalamic amenorrhea for
the sole purpose of regaining menses or improving BMD [16].
Furthermore, the Endocrine Society specifically suggests that
HA patients on OCPs for contraception should be educated
that OCPs may mask the return of spontaneous menses and
that bone loss may continue [16]. Instead of OCPs, short-term
use of transdermal estradiol with cyclic oral progestin is
suggested for adolescents and women who have not had
return of menses after 6 to 12 months of nutritional, psycholog-
ical, and/or modified exercise intervention [16]. The Endocrine
Society suggested against using bisphosphonates, denosumab,
testosterone, and leptin to improveBMDand the considerationof
short-term use of teriparatide in adults with delayed fracture
healing and very low BMD [16].
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5. Conclusion

As women with AN have similarly low BMD regardless of
menstrual status and estrogen therapy does not conclu-
sively improve BMD in women with AN and HA, the lack
of estrogen itself is not the main driver of poor bone
health. Amenorrhea is only one of several compensatory
responses to the chronic energy deficiency in AN/HA.
Other hormones of the hypothalamus/pituitary, adipose
tissue, and gastrointestinal system are affected and in
total harm bone metabolism. Thus, addressing one hormonal
aspect is not sufficient to improve bone density, and first-line
therapy remains achieving a positive energy balance through
lifestyle changes.
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